Combination Forecasting Model for Predicting the Shelf Life of Two-State Materials Based on Support Vector Machine
نویسندگان
چکیده
A combination forecasting model based on Support Vector Machine (SVM) whose objective is to minimize the structure risk is proposed. The storage failure of two-state materials tends to fail immediately without any recognizable defeats prior to the failure, which increases the difficulty of forecasting, so the combination forecasting model is often used to optimize the prediction effect. The core ideas of previous combination forecasting models such as those based on forecasting error and those based on nonlinear weighted average are finding the optimal weights, but the structure of forecasting model is fixed. In this paper, three single forecasting models, Weibull distribution statistic method, BP neural network prediction method and SPFM (Sliding Polynomial Fitting Method) are chosen in which their forecast mechanisms are completely different. The results of single forecasting methods are used as training set of SVM. By using libsvm toolbox, we can get the nonlinear mapping functions that have the minimum structure risk. At last, a simulation is conducted to verify this model by using the data from Petroleum Center.
منابع مشابه
A Wavelet Support Vector Machine Combination Model for Daily Suspended Sediment Forecasting
Abstract In this study, wavelet support vector machine (WSWM) model is proposed for daily suspended sediment (SS) prediction. The WSVM model is achieved by combination of two methods; discrete wavelet analysis and support vector machine (SVM). The developed model was compared with single SVM. Daily discharge (Q) and SS data from Yadkin River at Yadkin College, NC station in the USA were used. I...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملMonthly rainfall Forecasting using genetic programming and support vector machine
Rainfall and runoff estimation play a fundamental and effective role in the management and proper operation of the watershed, dams and reservoirs management, minimizing the damage caused by floods and droughts, and water resources management. The optimal performance of intelligent models has increased their use to predict various hydrological phenomena. Therefore, in this study, two intelligent...
متن کاملForecasting the Tehran Stock market by Machine Learning Methods using a New Loss Function
Stock market forecasting has attracted so many researchers and investors that many studies have been done in this field. These studies have led to the development of many predictive methods, the most widely used of which are machine learning-based methods. In machine learning-based methods, loss function has a key role in determining the model weights. In this study a new loss function is ...
متن کاملPREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM
The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...
متن کامل